In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X‐ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature

نویسندگان

  • Eric Prestat
  • Matthew A Kulzick
  • Paul J Dietrich
  • Mr Matthew Smith
  • Mr Eu-Pin Tien
  • M Grace Burke
  • Sarah J Haigh
  • Nestor J Zaluzec
چکیده

We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Nitroaromatics to Amines with Cellulose Supported Bimetallic Pd/Co Nanoparticles

Pd and Co nanoparticles were deposited on cellulose for use as a heterogeneous catalyst in the bimetallic catalytic reduction reaction. The catalyst was characterized with Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis, Flame Atomic Absorption Spectroscopy, and Transmission Electron Microscopy, and applied in the reduction reaction of nitroarom...

متن کامل

Chitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines

A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis...

متن کامل

Green Approach to Synthesis of Pt and Bimetallic Au@Pt Nanoparticles Using Carica Papaya Leaf Extract and Their Characterization

This study reports a green approach to synthesis of monometallic platinum nanoparticles (Pt NPs) and bimetallic aurium@platinum nanoparticles (Au@Pt) using aqueous leaf extract of Carica papaya as a reducing and stabilizing agent. The nature and morphology of as-synthesized PtNPs and bimetallic Au@Pt NPs were characterized using UV/vis spectroscopy (UV–vis), high resolution transmission electro...

متن کامل

Green Synthesis of Zinc Oxide Nanoparticles using Garlic skin extract and Its Characterization

Plant-mediated synthesis of metal oxide nanoparticles is a promising alternative to the traditional method of physical and chemical synthesis. In this paper, we report the green synthesis of zinc oxide nanoparticles (ZnONPs) by a biological method. During the study, Zinc oxide nanoparticles were synthesized by Allium sativum skin (garlic skin) extract. Formation of zinc oxide nanoparticles has ...

متن کامل

Green synthesis, characterization, and photo catalytic degradation efficiency of Trimanganese Tetroxide nanoparticle

Mn3O4 nanoparticles has been synthesised from Manganese (II) acetate and Simarouba Glauca leaf extract using microwave heating. This novel method of synthesis of Mn3O4 is fast, low-cost, non-toxic and environment friendly. The synthesised product was characterised by powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy( FT-IR), Ultraviolet-Visible spectroscopy( UV-Visible), X-r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017